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T3. Hydraulic jump
A hydraulic jump is a phenomenon in which the rapid flow of fluid slows down abruptly, resulting in an
elevation of the fluid level within the stream. This phenomenon can occur naturally in the flow of a river
or canal. Additionally, it is utilised in the construction of dams to decelerate the speed of water flow.
Furthermore, hydraulic jumping can be observed in domestic settings. For instance, when a jet of water
strikes the surface of a sink, a circular formation with a thin layer of fast-flowing water is formed around
it. At a certain distance from the jet, the water level rises, which is hydraulic jumping. The problem
requires you to describe this phenomenon using conservation laws.

Hydraulic jump around a fluid jet falling on a flat surface. From the work of G. Jannes, R. Piquet, P. Maïssa, C.
Mathis, and G. Rousseaux Phys. Rev. E 83, 056312

The entire problem considers the flow of water, which can be considered an incompressible fluid with a
density ρ = 1.0 · 103 kg/m3. The acceleration of free fall is g = 9.8 m/s2.

If energy losses are neglected, the Bernoulli equation is satisfied for stationary (time-independent) fluid
flow along any current tube. This can be expressed as follows:

E =
P

ρ
+

v2

2
+ gz = const

In this equation, P represents the pressure, v is the flow velocity, and z denotes the height of the fluid
volume under consideration. The value E will be referred to as the specific energy of the given fluid
element. The Froude number is employed as a dimensionless parameter to characterise the flow of a fluid,
taking into account the force of gravity. This is expressed as follows:

Fr =
v√
gd

,

where v is the characteristic flow velocity, d is the flow depth.

It should be noted that throughout the entirety of the problem, the atmospheric pressure does not affect
the fluid flow. Consequently, its contribution to the Bernoulli equation and to the expressions for forces
can be ignored.
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Part A. Flow without energy loss
In this part, we will consider the flow of a fluid along a rectangular canal of width b. The fluid motion can
be considered steady-state, meaning that the velocity at a given point in the canal is independent of time.
The water flow through the canal (the volume of water flowing through the channel cross-section per unit
time) is Q. It is assumed that the canal bottom is flat and that the flow velocity is uniform throughout
the canal cross-section. Atmospheric pressure does not need to be taken into account.

A1 The depth of water in the canal is d. Find the specific energy of the flow E. The height of the
canal, z, should be count from the bottom. The answer should be expressed in terms of the
following variables: Q, b, d, and g.

A2 Determine the critical water depth, dc, at which the specific energy E is minimal. Express it
in terms of Q, b, and g.

A3 Determine the fluid velocity vc and Froude number Frc in the case of critical depth. The answer
should be expressed in terms of Q, b, g.

d1 d2

H

v⃗1 v⃗2

Suppose now that at some point the bottom of the canal rises to a height H and its width remains
unchanged. Let d1 and v1 be the water depth and flow velocity before the change of the depth, d2, v2 –
after the change.

A4 Write two equations following from the laws of conservation of mass and energy of water that
relate these quantities. These equations may also include g and H. It is assumed that at all
points of the flow the flow is laminar and Bernoulli’s law is fulfilled

A5 The equations written in the previous task can not be solved exactly. Therefore, we will assume
that the height H is small. Consequently, ∆v = v2 − v1 ≪ v1 and ∆d = d2 − d1 ≪ d1 are
small changes in velocity and depth of flow. In all calculations, we limit ourselves to first-order
contributions of H, ∆v, and ∆d. Determine the values of the ratio ∆v/v1 and the ratio ∆d/d1.

A6 Indicate at which values of the Froude number of the flow before changing the depth of the
canal the velocity increases and at which values the velocity decreases.

Part B. Theory of hydraulic jumping
In this part we will examine the hydraulic jump in detail. For this purpose, we will again consider the
flow of fluid along a rectangular canal of constant width b. The flow area can be divided into three parts:

1. an initial part of fast flow of small depth, where velocity and depth are v1 and d1;

2. a transition part, the flow in which is highly turbulent and the depth changes and energy losses
occur, so the Bernoulli equation cannot be used;

3. a part of slow flow of constant velocity v2 and depth d2.
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d1
d2

v⃗1

v⃗2

To describe the hydrodynamic jump, let us select the volume of water in the canal in such a way that
the left boundary of the selected region lies in part 1 and the right boundary lies in part 3. The law of
conservation of mass and the law of momentum change can be applied to the selected volume.

B1 Find the hydrostatic pressure force F acting on the selected volume. It can be demonstrated
that the contribution of atmospheric pressure is zero and can be disregarded (proof is not
required). It is assumed that the pressure dependence on height is the same as in a stationary
fluid. The answer must be expressed in terms of ρ, g, b, d1, d2.

B2 Write two equations following from the law of conservation of mass and the law of change of
momentum that connect v1, v2, d1, d2. The answer may also include g, b, ρ.

B3 Using the equations obtained, determine the ratio of the water depth after the jump to the
depth before the jump d2/d1. Express the answer in terms of the Froude number of the flow
before the jump Fr.

B4 Find the difference of specific energies of the liquid before and after the jump ∆E = E2 − E1.
Express the answer in terms of g, d1, d2.

B5 At what values of the Froude number is hydrodynamic jump possible?

Part C. Hydraulic jump in the sink
In this part, we will use our previous results to estimate the parameters of the hydrodynamic jump that
can be observed in the sink. A complete theory would be required to determine the radius of the circle on
which the jump occurs. However, it is necessary to take into account fluid viscosity and surface tension.
Therefore, we will consider this radius as a given value.

Let a jet with a volumetric flow rate Q = 3.0 · 10−5 m3/s hit a horizontal surface, the jet diameter just
before contact with the surface D = 1.0 cm, the jet is perpendicular to the surface. The flow is symmetric
about the symmetry axis of the jet. Consider that the law of conservation of energy is fulfilled in the fluid
flow up to the moment of hydraulic jump, and the flow velocity does not depend on the distance from the
jet.

C1 Find the velocity v of fluid flow before the hydraulic jump. Give the formula and the numerical
value. The answer should be expressed in terms of Q and D.

C2 How does the depth d of water depend on the distance r from the center of the jet? Express
the answer in terms of D, r, find the numerical value when r = rc = 3 cm (the radius at which
the jump occurs).

C3 Find the Froude number (numerical value) at the point where the hydrodynamic jump occurs.
Determine how many times the water depth increases during the jump d2/d1.
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Solution
A1. Let us write the expression for specific energy at the upper point of the canal. In this point, the
liquid pressure is zero, and we do not take into account the atmospheric pressure (it would give a constant
addition that does not affect further calculations). Then we obtain

E =
v2

2
+ gd.

If we used a point at an random height z for the calculation, the pressure would be P = ρg(d− z), so we
get the same value:

E = g(d− z) +
v2

2
+ gz =

v2

2
+ gd.

The flow velocity can be expressed in terms of the volume flow rate Q and the cross-sectional area of the
flow S = bd,

v =
Q

bd
.

We finally obtain

E =
Q2

2b2d2
+ gd

A2. To find the minimum, we differentiate the expression for E by d:

∂E

∂d
= − Q2

b2d3
+ g = 0,

whence

dc =

(
Q2

gb2

)1/3

A3. Let’s substitute the found depth value into the formula for v:

vc =
Q

bdc
=

Q

b(Q2/gb2)1/3
=

(
gQ

b
b

)1/3

.

For the Froude number we obtain

Frc =
vc√
gdc

=
(gQ/b)1/3√
g(Q2/gb2)1/3

= 1.

vc =

(
gQ

b

)1/3

, F rc = 1

A4. The flow of water through any cross-section of the canal is the same, so:

Q = bd1v1 = bd2v2, v1d1 = v2d2.

From Bernoulli’s equation for a fluid that flows on a surface

v21
2
2 + gd1 =

v22
2

+ g(d2 +H).
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Here it is taken into account that the height of the liquid surface in the second part of the canal is d2+H.
As was shown in task A1, the same values would be obtained at any depth.

v1d1 = v2d2,
v21
2
+ gd1 =

v22
2
+ g(d2 +H)

A5. Since the changes in depth and velocity are small, we can rewrite the flow conservation condition as

d2 = d1
v1
v2

= d1
1

1 + ∆v/v1
≈ d1

(
1− ∆v

v1

)
.

Let’s substitute this result into Bernoulli’s equation:

v21
2

+ gd1 =
1

2
(v1 +∆v)2 + gd1

(
1− ∆v

v1

)
+ gH.

Expanding to first order by ∆v and reducing the same summands, we obtain

v1∆v − gd1
v1

∆v + gH = 0,

whence
∆v =

gHv1
gd1 − v21

.

Then the change in the depth of the flow

∆d = −d1
∆v

v1
= − gHd1

gd1 − v21
.

∆v

v1
=

gH

gd1 − v21
,

∆d

d1
= − gH

gd1 − v21

A6. It follows from the answer in the previous task that when v21 < gd1, i.e., when Fr1 < 1, the flow
velocity increases, and when Fr1 > 1 – decreases. In the case of critical flow Fr1 = 1 in the first order the
velocity change goes to infinity.

The velocity increases when Fr < 1, decreases when Fr > 1

B1. The pressure at height z from the bottom is P = ρg(d1 − z) (in the left part of the system before the
jump). The force that acts on the selected area on the left side can be found using the integral

F1 =

∫ d1

0

Pbdz =

∫ d1

0

ρg(d1 − z)bdz =
1

2
ρgbd21.

Similarly, the force acting on the right side is

F2 =
1

2
ρgbd22.

The total force is equal to the difference of these two forces because they act in opposite directions.
Consider the force positive if it acts to the right

F =
1

2
ρgb(d21 − d22).
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B2. The flow conservation condition looks exactly the same as in the previous part:

v1d1 = v2d2.

In time dt, a mass of fluid dm = ρQdt = ρbd1v1dt = ρbd2v2dt passes through any cross section of the flow.
Then the momentum of the fluid entering the area

dp1 = dmv1 = ρbd1v
2
1dt,

and the momentum of the outgoing fluid

dp2 = dmv2 = ρbd2v
2
2dt.

The change of momentum is due to the force acting on the system

dp2 − dp1 = Fdt,

therefore
ρb(d2v

2
2 − d1v

2
1)dt =

1

2
ρgb(d21 − d22)dt.

Reducing the common multipliers and regrouping the summands, we obtain

v21d1 +
g

2
d21 = v22d2 +

g

2
d22.

v1d1 = v2d2, v21d1 +
g

2
d21 = v22d2 +

g

2
d22

B3. From the flow conservation condition, let us eliminate the velocity of the fluid after the jump

v2 = v1
d1
d2

,

then the second equation takes the form

g

2
d22 + v21

d21
d2

=
g

2
d21 + v21d1,

After multiplication by d2, this equation reduces to a cubic equation with respect to d2. However, one
solution to this equation d2 = d1 is known, corresponding to the fact that there is no jump and the flow
of the fluid has not changed. This allows us to isolate the common multiplier d2 − d1 in the equation and
reduce the problem to a quadratic equation:

g

2
d2(d

2
2 − d21) + v21(d

2
1 − d1d2) = 0,

g

2
d2(d2 + d1)(d2 − d1)− v21d1(d2 − d1) = 0,

(d2 − d1)
(g
2
(d22 + d1d2)− v21d1

)
= 0.

We are not interested in solving d1 = d2, so the multiplier d2 − d1 can be reduced, resulting in a quadratic
equation

d22 + d1d2 −
2d1
g

v21 = 0,

its solutions are

d2 = −d1
2

± 1

2

√
d21 +

8d1v21
g

.
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Since d2 > 0, only the solution with the + sign is suitable. We finally find

d2
d1

=
1

2

√1 +
8v21
gd1

− 1

 =
1

2

(√
1 + 8Fr2 − 1

)
.

d2
d1

=
1

2

(√
1 + 8Fr2 − 1

)
B4. The difference of energies expressed in terms of velocities and depths is of the form

∆E =
v22 − v21

2
+ g(d2 − d1),

From the quadratic equation for d2 we find

v21 =
g

2d1
(d22 + d1d2) =

gd2
2d1

(d1 + d2).

Then the velocity after the jump

v22 = v22
d22
d21

=
gd1
2d2

(d1 + d2).

Substituting these results into the energy change, we obtain

∆E =
g

4

(
d1
d2

− d2
d1

)
(d1 + d2) + g(d2 − d1) =

=
g(d1 − d2)(d1 + d2)

2

4d1d2
+ g(d2 − d1) = g(d2 − d1)

(
1− (d1 + d2)

2

4d1d2

)
We find after simplifying

∆E =
g(d1 − d2)

3

4d1d2

B5. In the process of motion, part of the energy can be transferred to heat due to the effects of turbulence
and viscosity. At the same time, the energy cannot increase without external influence. Therefore, the
condition ∆E < 0 must be fulfilled, and hence d1 < d2, i.e. the depth of the flow must increase, so there
is indeed a jump. Hence we get the inequality

1

2

(√
1 + 8Fr2 − 1

)
> 1,

which means √
1 + 8Fr2 > 3,

so Fr > 1.

The jump is possible when Fr > 1

C1. Flow in an falling jet is related to velocity by the relation

Q =
πD2

4
v,

whence the velocity of water in the jet

v =
4Q

πD2
.
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As given, this same velocity is equal to the velocity of the stream before the jump.

v =
4Q

πD2
= 0.38 m/s

C2. Let us select a cylinder of radius r centered on the symmetry axis of the system. The flux through
the side of this cylinder is equal to

Q = 2πrdv,

whence the depth of the water layer

d =
Q

2πrv
=

D2

8r
.

d =
D2

8r
= 0.42 mm

C3. Using the equations for velocity and depth, we find

Fr =
v√
gd

=
8
√
2

π

Q

D3

√
rc
g

= 6.0,

then the depth ratio
d2
d1

=
1

2

(√
1 +

1024Q2rc
π2gD6

− 1

)
= 8.0

Fr = 6.0,
d2
d1

= 8.0


